Optimal insurance design with Lambda-Value-at-Risk
Tim J. Boonen,
Yuyu Chen,
Xia Han and
Qiuqi Wang
Papers from arXiv.org
Abstract:
This paper explores optimal insurance solutions based on the Lambda-Value-at-Risk ($\Lambda\VaR$). If the expected value premium principle is used, our findings confirm that, similar to the VaR model, a truncated stop-loss indemnity is optimal in the $\Lambda\VaR$ model. We further provide a closed-form expression of the deductible parameter under certain conditions. Moreover, we study the use of a $\Lambda'\VaR$ as premium principle as well, and show that full or no insurance is optimal. Dual stop-loss is shown to be optimal if we use a $\Lambda'\VaR$ only to determine the risk-loading in the premium principle. Moreover, we study the impact of model uncertainty, considering situations where the loss distribution is unknown but falls within a defined uncertainty set. Our findings indicate that a truncated stop-loss indemnity is optimal when the uncertainty set is based on a likelihood ratio. However, when uncertainty arises from the first two moments of the loss variable, we provide the closed-form optimal deductible in a stop-loss indemnity.
Date: 2024-08
New Economics Papers: this item is included in nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2408.09799 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2408.09799
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().