Deep-MacroFin: Informed Equilibrium Neural Network for Continuous Time Economic Models
Yuntao Wu,
Jiayuan Guo,
Goutham Gopalakrishna and
Zissis Poulos
Papers from arXiv.org
Abstract:
In this paper, we present Deep-MacroFin, a comprehensive framework designed to solve partial differential equations, with a particular focus on models in continuous time economics. This framework leverages deep learning methodologies, including Multi-Layer Perceptrons and the newly developed Kolmogorov-Arnold Networks. It is optimized using economic information encapsulated by Hamilton-Jacobi-Bellman (HJB) equations and coupled algebraic equations. The application of neural networks holds the promise of accurately resolving high-dimensional problems with fewer computational demands and limitations compared to other numerical methods. This framework can be readily adapted for systems of partial differential equations in high dimensions. Importantly, it offers a more efficient (5$\times$ less CUDA memory and 40$\times$ fewer FLOPs in 100D problems) and user-friendly implementation than existing libraries. We also incorporate a time-stepping scheme to enhance training stability for nonlinear HJB equations, enabling the solution of 50D economic models.
Date: 2024-08, Revised 2025-05
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2408.10368 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2408.10368
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().