EconPapers    
Economics at your fingertips  
 

Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications

Jimin Huang, Mengxi Xiao, Dong Li, Zihao Jiang, Yuzhe Yang, Yifei Zhang, Lingfei Qian, Yan Wang, Xueqing Peng, Yang Ren, Ruoyu Xiang, Zhengyu Chen, Xiao Zhang, Yueru He, Weiguang Han, Shunian Chen, Lihang Shen, Daniel Kim, Yangyang Yu, Yupeng Cao, Zhiyang Deng, Haohang Li, Duanyu Feng, Yongfu Dai, VijayaSai Somasundaram, Peng Lu, Guojun Xiong, Zhiwei Liu, Zheheng Luo, Zhiyuan Yao, Ruey-Ling Weng, Meikang Qiu, Kaleb E Smith, Honghai Yu, Yanzhao Lai, Min Peng, Jian-Yun Nie, Jordan W. Suchow, Xiao-Yang Liu, Benyou Wang, Alejandro Lopez-Lira, Qianqian Xie, Sophia Ananiadou and Junichi Tsujii

Papers from arXiv.org

Abstract: Financial LLMs hold promise for advancing financial tasks and domain-specific applications. However, they are limited by scarce corpora, weak multimodal capabilities, and narrow evaluations, making them less suited for real-world application. To address this, we introduce \textit{Open-FinLLMs}, the first open-source multimodal financial LLMs designed to handle diverse tasks across text, tabular, time-series, and chart data, excelling in zero-shot, few-shot, and fine-tuning settings. The suite includes FinLLaMA, pre-trained on a comprehensive 52-billion-token corpus; FinLLaMA-Instruct, fine-tuned with 573K financial instructions; and FinLLaVA, enhanced with 1.43M multimodal tuning pairs for strong cross-modal reasoning. We comprehensively evaluate Open-FinLLMs across 14 financial tasks, 30 datasets, and 4 multimodal tasks in zero-shot, few-shot, and supervised fine-tuning settings, introducing two new multimodal evaluation datasets. Our results show that Open-FinLLMs outperforms afvanced financial and general LLMs such as GPT-4, across financial NLP, decision-making, and multi-modal tasks, highlighting their potential to tackle real-world challenges. To foster innovation and collaboration across academia and industry, we release all codes (https://anonymous.4open.science/r/PIXIU2-0D70/B1D7/LICENSE) and models under OSI-approved licenses.

Date: 2024-08, Revised 2025-04
New Economics Papers: this item is included in nep-ain and nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2408.11878 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2408.11878

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-04-03
Handle: RePEc:arx:papers:2408.11878