EconPapers    
Economics at your fingertips  
 

Estimating Heterogenous Treatment Effects for Survival Data with Doubly Doubly Robust Estimator

Guanghui Pan

Papers from arXiv.org

Abstract: In this paper, we introduce a doubly doubly robust estimator for the average and heterogeneous treatment effect for left-truncated-right-censored (LTRC) survival data. In causal inference for survival functions in LTRC survival data, two missing data issues are noteworthy: one is the missing data of counterfactuals for causal inference, and the other is the missing data due to truncation and censoring. Based on previous research on non-parametric deep learning estimation in survival analysis, this paper proposes an algorithm to obtain an efficient estimate of the average and heterogeneous causal effect. We simulate the data and compare our methods with the marginal hazard ratio estimation, the naive plug-in estimation, and the doubly robust causal with Cox Proportional Hazard estimation and illustrate the advantages and disadvantages of the model application.

Date: 2024-09
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2409.01412 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2409.01412

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2409.01412