The Application of Green GDP and Its Impact on Global Economy and Environment: Analysis of GGDP based on SEEA model
Mingpu Ma
Papers from arXiv.org
Abstract:
This paper presents an analysis of Green Gross Domestic Product (GGDP) using the System of Environmental-Economic Accounting (SEEA) model to evaluate its impact on global climate mitigation and economic health. GGDP is proposed as a superior measure to tradi-tional GDP by incorporating natural resource consumption, environmental pollution control, and degradation factors. The study develops a GGDP model and employs grey correlation analysis and grey prediction models to assess its relationship with these factors. Key findings demonstrate that replacing GDP with GGDP can positively influence climate change, partic-ularly in reducing CO2 emissions and stabilizing global temperatures. The analysis further explores the implications of GGDP adoption across developed and developing countries, with specific predictions for China and the United States. The results indicate a potential increase in economic levels for developing countries, while developed nations may experi-ence a decrease. Additionally, the shift to GGDP is shown to significantly reduce natural re-source depletion and population growth rates in the United States, suggesting broader envi-ronmental and economic benefits. This paper highlights the universal applicability of the GGDP model and its potential to enhance environmental and economic policies globally.
Date: 2024-09
New Economics Papers: this item is included in nep-ene
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2409.02642 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2409.02642
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().