Robust Elicitable Functionals
Kathleen E. Miao and
Silvana M. Pesenti
Papers from arXiv.org
Abstract:
Elicitable functionals and (strictly) consistent scoring functions are of interest due to their utility of determining (uniquely) optimal forecasts, and thus the ability to effectively backtest predictions. However, in practice, assuming that a distribution is correctly specified is too strong a belief to reliably hold. To remediate this, we incorporate a notion of statistical robustness into the framework of elicitable functionals, meaning that our robust functional accounts for "small" misspecifications of a baseline distribution. Specifically, we propose a robustified version of elicitable functionals by using the Kullback-Leibler divergence to quantify potential misspecifications from a baseline distribution. We show that the robust elicitable functionals admit unique solutions lying at the boundary of the uncertainty region, and provide conditions for existence and uniqueness. Since every elicitable functional possesses infinitely many scoring functions, we propose the class of b-homogeneous strictly consistent scoring functions, for which the robust functionals maintain desirable statistical properties. We show the applicability of the robust elicitable functional in several examples: in a reinsurance setting and in robust regression problems.
Date: 2024-09, Revised 2025-02
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2409.04412 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2409.04412
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().