A Market for Lemons? Strategic Directions for a Vigilant Application of Artificial Intelligence in Entrepreneurship Research
Martin Obschonka and
Moren Levesque
Papers from arXiv.org
Abstract:
The rapid expansion of AI adoption (e.g., using machine learning, deep learning, or large language models as research methods) and the increasing availability of big data have the potential to bring about the most significant transformation in entrepreneurship scholarship the field has ever witnessed. This article makes a pressing meta-contribution by highlighting a significant risk of unproductive knowledge exchanges in entrepreneurship research amid the AI revolution. It offers strategies to mitigate this risk and provides guidance for future AI-based studies to enhance their collective impact and relevance. Drawing on Akerlof's renowned market-for-lemons concept, we identify the potential for significant knowledge asymmetries emerging from the field's evolution into its current landscape (e.g., complexities around construct validity, theory building, and research relevance). Such asymmetries are particularly deeply ingrained due to what we term the double-black-box puzzle, where the widely recognized black box nature of AI methods intersects with the black box nature of the entrepreneurship phenomenon driven by inherent uncertainty. As a result, these asymmetries could lead to an increase in suboptimal research products that go undetected, collectively creating a market for lemons that undermines the field's well-being, reputation, and impact. However, importantly, if these risks can be mitigated, the AI revolution could herald a new golden era for entrepreneurship research. We discuss the necessary actions to elevate the field to a higher level of AI resilience while steadfastly maintaining its foundational principles and core values.
Date: 2024-09
New Economics Papers: this item is included in nep-ain, nep-ent, nep-ino and nep-ipr
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2409.08890 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2409.08890
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().