EconPapers    
Economics at your fingertips  
 

Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning

Shuochen Bi, Yufan Lian and Ziyue Wang

Papers from arXiv.org

Abstract: In the financial field of the United States, the application of big data technology has become one of the important means for financial institutions to enhance competitiveness and reduce risks. The core objective of this article is to explore how to fully utilize big data technology to achieve complete integration of internal and external data of financial institutions, and create an efficient and reliable platform for big data collection, storage, and analysis. With the continuous expansion and innovation of financial business, traditional risk management models are no longer able to meet the increasingly complex market demands. This article adopts big data mining and real-time streaming data processing technology to monitor, analyze, and alert various business data. Through statistical analysis of historical data and precise mining of customer transaction behavior and relationships, potential risks can be more accurately identified and timely responses can be made. This article designs and implements a financial big data intelligent risk control platform. This platform not only achieves effective integration, storage, and analysis of internal and external data of financial institutions, but also intelligently displays customer characteristics and their related relationships, as well as intelligent supervision of various risk information

Date: 2024-09
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ipr, nep-pay and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2409.10331 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2409.10331

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2409.10331