Why you should also use OLS estimation of tail exponents
Thiago Trafane Oliveira Santos () and
Daniel Oliveira Cajueiro
Additional contact information
Daniel Oliveira Cajueiro: Department of Economics, University of Brasilia, Brazil. National Institute of Science and Technology for Complex Systems
Papers from arXiv.org
Abstract:
Even though practitioners often estimate Pareto exponents running OLS rank-size regressions, the usual recommendation is to use the Hill MLE with a small-sample correction instead, due to its unbiasedness and efficiency. In this paper, we advocate that you should also apply OLS in empirical applications. On the one hand, we demonstrate that, with a small-sample correction, the OLS estimator is also unbiased. On the other hand, we show that the MLE assigns significantly greater weight to smaller observations. This suggests that the OLS estimator may outperform the MLE in cases where the distribution is (i) strictly Pareto but only in the upper tail or (ii) regularly varying rather than strictly Pareto. We substantiate our theoretical findings with Monte Carlo simulations and real-world applications, demonstrating the practical relevance of the OLS method in estimating tail exponents.
Date: 2024-09, Revised 2024-09
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2409.10448 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2409.10448
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().