Price predictability in limit order book with deep learning model
Kyungsub Lee
Papers from arXiv.org
Abstract:
This study explores the prediction of high-frequency price changes using deep learning models. Although state-of-the-art methods perform well, their complexity impedes the understanding of successful predictions. We found that an inadequately defined target price process may render predictions meaningless by incorporating past information. The commonly used three-class problem in asset price prediction can generally be divided into volatility and directional prediction. When relying solely on the price process, directional prediction performance is not substantial. However, volume imbalance improves directional prediction performance.
Date: 2024-09
New Economics Papers: this item is included in nep-big, nep-fmk and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2409.14157 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2409.14157
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).