Crisis Alpha: A High-Performance Trading Algorithm Tested in Market Downturns
Maysam Khodayari Gharanchaei and
Reza Babazadeh
Papers from arXiv.org
Abstract:
Forming quantitative portfolios using statistical risk models presents a significant challenge for hedge funds and portfolio managers. This research investigates three distinct statistical risk models to construct quantitative portfolios of 1,000 floating stocks in the US market. Utilizing five different investment strategies, these models are tested across four periods, encompassing the last three major financial crises: The Dot Com Bubble, Global Financial Crisis, and Covid-19 market downturn. Backtests leverage the CRSP dataset from January 1990 through December 2023. The results demonstrate that the proposed models consistently outperformed market excess returns across all periods. These findings suggest that the developed risk models can serve as valuable tools for asset managers, aiding in strategic decision-making and risk management in various economic conditions.
Date: 2024-08
New Economics Papers: this item is included in nep-fmk and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2409.14510 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2409.14510
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().