The continuous-time limit of quasi score-driven volatility models
Yinhao Wu and
Ping He
Papers from arXiv.org
Abstract:
This paper explores the continuous-time limit of a class of Quasi Score-Driven (QSD) models that characterize volatility. As the sampling frequency increases and the time interval tends to zero, the model weakly converges to a continuous-time stochastic volatility model where the two Brownian motions are correlated, thereby capturing the leverage effect in the market. Subsequently, we identify that a necessary condition for non-degenerate correlation is that the distribution of driving innovations differs from that of computing score, and at least one being asymmetric. We then illustrate this with two typical examples. As an application, the QSD model is used as an approximation for correlated stochastic volatility diffusions and quasi maximum likelihood estimation is performed. Simulation results confirm the method's effectiveness, particularly in estimating the correlation coefficient.
Date: 2024-09
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2409.14734 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2409.14734
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).