Transfer learning for financial data predictions: a systematic review
V. Lanzetta
Papers from arXiv.org
Abstract:
Literature highlighted that financial time series data pose significant challenges for accurate stock price prediction, because these data are characterized by noise and susceptibility to news; traditional statistical methodologies made assumptions, such as linearity and normality, which are not suitable for the non-linear nature of financial time series; on the other hand, machine learning methodologies are able to capture non linear relationship in the data. To date, neural network is considered the main machine learning tool for the financial prices prediction. Transfer Learning, as a method aimed at transferring knowledge from source tasks to target tasks, can represent a very useful methodological tool for getting better financial prediction capability. Current reviews on the above body of knowledge are mainly focused on neural network architectures, for financial prediction, with very little emphasis on the transfer learning methodology; thus, this paper is aimed at going deeper on this topic by developing a systematic review with respect to application of Transfer Learning for financial market predictions and to challenges/potential future directions of the transfer learning methodologies for stock market predictions.
Date: 2024-09
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2409.17183 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2409.17183
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().