EconPapers    
Economics at your fingertips  
 

Improved Hardness Results for the Clearing Problem in Financial Networks with Credit Default Swaps

Simon Dohn, Kristoffer Arnsfelt Hansen and Asger Klinkby

Papers from arXiv.org

Abstract: We study computational problems in financial networks of banks connected by debt contracts and credit default swaps (CDSs). A main problem is to determine \emph{clearing} payments, for instance right after some banks have been exposed to a financial shock. Previous works have shown the $\varepsilon$-approximate version of the problem to be $\mathrm{PPAD}$-complete and the exact problem $\mathrm{FIXP}$-complete. We show that $\mathrm{PPAD}$-hardness hold when $\varepsilon \approx 0.101$, improving the previously best bound significantly. Due to the fact that the clearing problem typically does not have a unique solution, or that it may not have a solution at all in the presence of default costs, several natural decision problems are also of great interest. We show two such problems to be $\exists\mathbb{R}$-complete, complementing previous $\mathrm{NP}$-hardness results for the approximate setting.

Date: 2024-09
New Economics Papers: this item is included in nep-ban, nep-cmp and nep-cta
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2409.18717 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2409.18717

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-30
Handle: RePEc:arx:papers:2409.18717