A Nonparametric Test of Heterogeneous Treatment Effects under Interference
Julius Owusu
Papers from arXiv.org
Abstract:
Statistical inference of heterogeneous treatment effects (HTEs) across predefined subgroups is challenging when units interact because treatment effects may vary by pre-treatment variables, post-treatment exposure variables (that measure the exposure to other units' treatment statuses), or both. Thus, the conventional HTEs testing procedures may be invalid under interference. In this paper, I develop statistical methods to infer HTEs and disentangle the drivers of treatment effects heterogeneity in populations where units interact. Specifically, I incorporate clustered interference into the potential outcomes model and propose kernel-based test statistics for the null hypotheses of (i) no HTEs by treatment assignment (or post-treatment exposure variables) for all pre-treatment variables values and (ii) no HTEs by pre-treatment variables for all treatment assignment vectors. I recommend a multiple-testing algorithm to disentangle the source of heterogeneity in treatment effects. I prove the asymptotic properties of the proposed test statistics. Finally, I illustrate the application of the test procedures in an empirical setting using an experimental data set from a Chinese weather insurance program.
Date: 2024-10
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2410.00733 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2410.00733
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().