The Fourier Cosine Method for Discrete Probability Distributions
Xiaoyu Shen,
Fang Fang and
Chengguang Liu
Papers from arXiv.org
Abstract:
We provide a rigorous convergence proof demonstrating that the well-known semi-analytical Fourier cosine (COS) formula for the inverse Fourier transform of continuous probability distributions can be extended to discrete probability distributions, with the help of spectral filters. We establish general convergence rates for these filters and further show that several classical spectral filters achieve convergence rates one order faster than previously recognized in the literature on the Gibbs phenomenon. Our numerical experiments corroborate the theoretical convergence results. Additionally, we illustrate the computational speed and accuracy of the discrete COS method with applications in computational statistics and quantitative finance. The theoretical and numerical results highlight the method's potential for solving problems involving discrete distributions, particularly when the characteristic function is known, allowing the discrete Fourier transform (DFT) to be bypassed.
Date: 2024-10, Revised 2024-10
New Economics Papers: this item is included in nep-dcm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2410.04487 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2410.04487
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().