EconPapers    
Economics at your fingertips  
 

Numerical analysis of American option pricing in a two-asset jump-diffusion model

Hao Zhou and Duy-Minh Dang

Papers from arXiv.org

Abstract: This paper addresses an important gap in rigorous numerical treatments for pricing American options under correlated two-asset jump-diffusion models using the viscosity solution framework, with a particular focus on the Merton model. The pricing of these options is governed by complex two-dimensional (2-D) variational inequalities that incorporate cross-derivative terms and nonlocal integro-differential terms due to the presence of jumps. Existing numerical methods, primarily based on finite differences, often struggle with preserving monotonicity in the approximation of cross-derivatives, a key requirement for ensuring convergence to the viscosity solution. In addition, these methods face challenges in accurately discretizing 2-D jump integrals. We introduce a novel approach to effectively tackle the aforementioned variational inequalities while seamlessly handling cross-derivative terms and nonlocal integro-differential terms through an efficient and straightforward-to-implement monotone integration scheme. Within each timestep, our approach explicitly enforces the inequality constraint, resulting in a 2-D Partial Integro-Differential Equation (PIDE) to solve. Its solution is expressed as a 2-D convolution integral involving the Green's function of the PIDE. We derive an infinite series representation of this Green's function, where each term is non-negative and computable. This facilitates the numerical approximation of the PIDE solution through a monotone integration method. To enhance efficiency, we develop an implementation of this monotone scheme via FFTs, exploiting the Toeplitz matrix structure. The proposed method is proved to be both $\ell_{\infty} $-stable and consistent in the viscosity sense, ensuring its convergence to the viscosity solution of the variational inequality. Extensive numerical results validate the effectiveness and robustness of our approach.

Date: 2024-10, Revised 2025-04
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2410.04745 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2410.04745

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-04-11
Handle: RePEc:arx:papers:2410.04745