Deep Learning Methods for S Shaped Utility Maximisation with a Random Reference Point
Ashley Davey and
Harry Zheng
Papers from arXiv.org
Abstract:
We consider the portfolio optimisation problem where the terminal function is an S-shaped utility applied at the difference between the wealth and a random benchmark process. We develop several numerical methods for solving the problem using deep learning and duality methods. We use deep learning methods to solve the associated Hamilton-Jacobi-Bellman equation for both the primal and dual problems, and the adjoint equation arising from the stochastic maximum principle. We compare the solution of this non-concave problem to that of concavified utility, a random function depending on the benchmark, in both complete and incomplete markets. We give some numerical results for power and log utilities to show the accuracy of the suggested algorithms.
Date: 2024-10
New Economics Papers: this item is included in nep-big, nep-cmp and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2410.05524 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2410.05524
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).