EconPapers    
Economics at your fingertips  
 

Computing Systemic Risk Measures with Graph Neural Networks

Lukas Gonon, Thilo Meyer-Brandis and Niklas Weber

Papers from arXiv.org

Abstract: This paper investigates systemic risk measures for stochastic financial networks of explicitly modelled bilateral liabilities. We extend the notion of systemic risk measures from Biagini, Fouque, Fritelli and Meyer-Brandis (2019) to graph structured data. In particular, we focus on an aggregation function that is derived from a market clearing algorithm proposed by Eisenberg and Noe (2001). In this setting, we show the existence of an optimal random allocation that distributes the overall minimal bailout capital and secures the network. We study numerical methods for the approximation of systemic risk and optimal random allocations. We propose to use permutation equivariant architectures of neural networks like graph neural networks (GNNs) and a class that we name (extended) permutation equivariant neural networks ((X)PENNs). We compare their performance to several benchmark allocations. The main feature of GNNs and (X)PENNs is that they are permutation equivariant with respect to the underlying graph data. In numerical experiments we find evidence that these permutation equivariant methods are superior to other approaches.

Date: 2024-09
New Economics Papers: this item is included in nep-big, nep-cmp and nep-rmg
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2410.07222 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2410.07222

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2024-12-28
Handle: RePEc:arx:papers:2410.07222