EconPapers    
Economics at your fingertips  
 

Reinforcement Learning in Non-Markov Market-Making

Luca Lalor and Anatoliy Swishchuk

Papers from arXiv.org

Abstract: We develop a deep reinforcement learning (RL) framework for an optimal market-making (MM) trading problem, specifically focusing on price processes with semi-Markov and Hawkes Jump-Diffusion dynamics. We begin by discussing the basics of RL and the deep RL framework used, where we deployed the state-of-the-art Soft Actor-Critic (SAC) algorithm for the deep learning part. The SAC algorithm is an off-policy entropy maximization algorithm more suitable for tackling complex, high-dimensional problems with continuous state and action spaces like in optimal market-making (MM). We introduce the optimal MM problem considered, where we detail all the deterministic and stochastic processes that go into setting up an environment for simulating this strategy. Here we also give an in-depth overview of the jump-diffusion pricing dynamics used, our method for dealing with adverse selection within the limit order book, and we highlight the working parts of our optimization problem. Next, we discuss training and testing results, where we give visuals of how important deterministic and stochastic processes such as the bid/ask, trade executions, inventory, and the reward function evolved. We include a discussion on the limitations of these results, which are important points to note for most diffusion models in this setting.

Date: 2024-10, Revised 2024-11
New Economics Papers: this item is included in nep-big, nep-cmp and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2410.14504 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2410.14504

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2410.14504