EconPapers    
Economics at your fingertips  
 

Semiparametric Bayesian Inference for a Conditional Moment Equality Model

Christopher D. Walker

Papers from arXiv.org

Abstract: Conditional moment equality models are regularly encountered in empirical economics, yet they are difficult to estimate. These models map a conditional distribution of data to a structural parameter via the restriction that a conditional mean equals zero. Using this observation, I introduce a Bayesian inference framework in which an unknown conditional distribution is replaced with a nonparametric posterior, and structural parameter inference is then performed using an implied posterior. The method has the same flexibility as frequentist semiparametric estimators and does not require converting conditional moments to unconditional moments. Importantly, I prove a semiparametric Bernstein-von Mises theorem, providing conditions under which, in large samples, the posterior for the structural parameter is approximately normal, centered at an efficient estimator, and has variance equal to the Chamberlain (1987) semiparametric efficiency bound. As byproducts, I show that Bayesian uncertainty quantification methods are asymptotically optimal frequentist confidence sets and derive low-level sufficient conditions for Gaussian process priors. The latter sheds light on a key prior stability condition and relates to the numerical aspects of the paper in which these priors are used to predict the welfare effects of price changes.

Date: 2024-10
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2410.16017 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2410.16017

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2410.16017