EconPapers    
Economics at your fingertips  
 

Detecting Spatial Outliers: the Role of the Local Influence Function

Giuseppe Arbia and Vincenzo Nardelli

Papers from arXiv.org

Abstract: In the analysis of large spatial datasets, identifying and treating spatial outliers is essential for accurately interpreting geographical phenomena. While spatial correlation measures, particularly Local Indicators of Spatial Association (LISA), are widely used to detect spatial patterns, the presence of abnormal observations frequently distorts the landscape and conceals critical spatial relationships. These outliers can significantly impact analysis due to the inherent spatial dependencies present in the data. Traditional influence function (IF) methodologies, commonly used in statistical analysis to measure the impact of individual observations, are not directly applicable in the spatial context because the influence of an observation is determined not only by its own value but also by its spatial location, its connections with neighboring regions, and the values of those neighboring observations. In this paper, we introduce a local version of the influence function (LIF) that accounts for these spatial dependencies. Through the analysis of both simulated and real-world datasets, we demonstrate how the LIF provides a more nuanced and accurate detection of spatial outliers compared to traditional LISA measures and local impact assessments, improving our understanding of spatial patterns.

Date: 2024-10
New Economics Papers: this item is included in nep-ecm, nep-geo and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2410.18261 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2410.18261

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2410.18261