EconPapers    
Economics at your fingertips  
 

Generalized Distribution Prediction for Asset Returns

\'Isak P\'etursson and Mar\'ia \'Oskarsd\'ottir

Papers from arXiv.org

Abstract: We present a novel approach for predicting the distribution of asset returns using a quantile-based method with Long Short-Term Memory (LSTM) networks. Our model is designed in two stages: the first focuses on predicting the quantiles of normalized asset returns using asset-specific features, while the second stage incorporates market data to adjust these predictions for broader economic conditions. This results in a generalized model that can be applied across various asset classes, including commodities, cryptocurrencies, as well as synthetic datasets. The predicted quantiles are then converted into full probability distributions through kernel density estimation, allowing for more precise return distribution predictions and inferencing. The LSTM model significantly outperforms a linear quantile regression baseline by 98% and a dense neural network model by over 50%, showcasing its ability to capture complex patterns in financial return distributions across both synthetic and real-world data. By using exclusively asset-class-neutral features, our model achieves robust, generalizable results.

Date: 2024-10, Revised 2025-01
New Economics Papers: this item is included in nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2410.23296 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2410.23296

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2410.23296