EconPapers    
Economics at your fingertips  
 

Machine Learning Debiasing with Conditional Moment Restrictions: An Application to LATE

Facundo Arga\~naraz and Juan Carlos Escanciano

Papers from arXiv.org

Abstract: Models with Conditional Moment Restrictions (CMRs) are popular in economics. These models involve finite and infinite dimensional parameters. The infinite dimensional components include conditional expectations, conditional choice probabilities, or policy functions, which might be flexibly estimated using Machine Learning tools. This paper presents a characterization of locally debiased moments for regular models defined by general semiparametric CMRs with possibly different conditioning variables. These moments are appealing as they are known to be less affected by first-step bias. Additionally, we study their existence and relevance. Such results apply to a broad class of smooth functionals of finite and infinite dimensional parameters that do not necessarily appear in the CMRs. As a leading application of our theory, we characterize debiased machine learning for settings of treatment effects with endogeneity, giving necessary and sufficient conditions. We present a large class of relevant debiased moments in this context. We then propose the Compliance Machine Learning Estimator (CML), based on a practically convenient orthogonal relevant moment. We show that the resulting estimand can be written as a convex combination of conditional local average treatment effects (LATE). Altogether, CML enjoys three appealing properties in the LATE framework: (1) local robustness to first-stage estimation, (2) an estimand that can be identified under a minimal relevance condition, and (3) a meaningful causal interpretation. Our numerical experimentation shows satisfactory relative performance of such an estimator. Finally, we revisit the Oregon Health Insurance Experiment, analyzed by Finkelstein et al. (2012). We find that the use of machine learning and CML suggest larger positive effects on health care utilization than previously determined.

Date: 2024-10
New Economics Papers: this item is included in nep-big, nep-dcm, nep-ecm and nep-hea
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2410.23785 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2410.23785

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2410.23785