Calibrated quantile prediction for Growth-at-Risk
Pietro Bogani,
Matteo Fontana,
Luca Neri and
Simone Vantini
Papers from arXiv.org
Abstract:
Accurate computation of robust estimates for extremal quantiles of empirical distributions is an essential task for a wide range of applicative fields, including economic policymaking and the financial industry. Such estimates are particularly critical in calculating risk measures, such as Growth-at-Risk (GaR). % and Value-at-Risk (VaR). This work proposes a conformal framework to estimate calibrated quantiles, and presents an extensive simulation study and a real-world analysis of GaR to examine its benefits with respect to the state of the art. Our findings show that CP methods consistently improve the calibration and robustness of quantile estimates at all levels. The calibration gains are appreciated especially at extremal quantiles, which are critical for risk assessment and where traditional methods tend to fall short. In addition, we introduce a novel property that guarantees coverage under the exchangeability assumption, providing a valuable tool for managing risks by quantifying and controlling the likelihood of future extreme observations.
Date: 2024-11
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2411.00520 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.00520
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().