Randomized Controlled Trials for Security Copilot for IT Administrators
James Bono and
Alec Xu
Papers from arXiv.org
Abstract:
As generative AI (GAI) tools become increasingly integrated into workplace environments, it is essential to measure their impact on productivity across specific domains. This study evaluates the effects of Microsoft's Security Copilot ("Copilot") on information technology administrators ("IT admins") through randomized controlled trials. Participants were divided into treatment and control groups, with the former granted access to Copilot within Microsoft's Entra and Intune admin centers. Across three IT admin scenarios - sign-in troubleshooting, device policy management, and device troubleshooting - Copilot users demonstrated substantial improvements in both accuracy and speed. Across all scenarios and tasks, Copilot subjects experienced a 34.53% improvement in overall accuracy and a 29.79% reduction in task completion time. We also find that the productivity benefits vary by task type, with more complex tasks showing greater improvement. In free response tasks, Copilot users identified 146.07% more relevant facts and reduced task completion time by 61.14%. Subject satisfaction with Copilot was high, with participants reporting reduced effort and a strong preference for using the tool in future tasks. These findings suggest that GAI tools like Copilot can significantly enhance the productivity and efficiency of IT admins, especially in scenarios requiring information synthesis and complex decision-making.
Date: 2024-11, Revised 2024-11
New Economics Papers: this item is included in nep-exp and nep-ict
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2411.01067 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.01067
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().