News-Driven Stock Price Forecasting in Indian Markets: A Comparative Study of Advanced Deep Learning Models
Kaushal Attaluri,
Mukesh Tripathi,
Srinithi Reddy and
Shivendra
Papers from arXiv.org
Abstract:
Forecasting stock market prices remains a complex challenge for traders, analysts, and engineers due to the multitude of factors that influence price movements. Recent advancements in artificial intelligence (AI) and natural language processing (NLP) have significantly enhanced stock price prediction capabilities. AI's ability to process vast and intricate data sets has led to more sophisticated forecasts. However, achieving consistently high accuracy in stock price forecasting remains elusive. In this paper, we leverage 30 years of historical data from national banks in India, sourced from the National Stock Exchange, to forecast stock prices. Our approach utilizes state-of-the-art deep learning models, including multivariate multi-step Long Short-Term Memory (LSTM), Facebook Prophet with LightGBM optimized through Optuna, and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). We further integrate sentiment analysis from tweets and reliable financial sources such as Business Standard and Reuters, acknowledging their crucial influence on stock price fluctuations.
Date: 2024-10
New Economics Papers: this item is included in nep-big, nep-cmp, nep-fmk and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2411.05788 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.05788
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().