EconPapers    
Economics at your fingertips  
 

Optimal Execution with Reinforcement Learning

Yadh Hafsi and Edoardo Vittori

Papers from arXiv.org

Abstract: This study investigates the development of an optimal execution strategy through reinforcement learning, aiming to determine the most effective approach for traders to buy and sell inventory within a finite time horizon. Our proposed model leverages input features derived from the current state of the limit order book and operates at a high frequency to maximize control. To simulate this environment and overcome the limitations associated with relying on historical data, we utilize the multi-agent market simulator ABIDES, which provides a diverse range of depth levels within the limit order book. We present a custom MDP formulation followed by the results of our methodology and benchmark the performance against standard execution strategies. Results show that the reinforcement learning agent outperforms standard strategies and offers a practical foundation for real-world trading applications.

Date: 2024-11, Revised 2025-11
New Economics Papers: this item is included in nep-cmp and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2411.06389 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.06389

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-25
Handle: RePEc:arx:papers:2411.06389