Optimal Execution with Reinforcement Learning
Yadh Hafsi and
Edoardo Vittori
Papers from arXiv.org
Abstract:
This study investigates the development of an optimal execution strategy through reinforcement learning, aiming to determine the most effective approach for traders to buy and sell inventory within a finite time horizon. Our proposed model leverages input features derived from the current state of the limit order book and operates at a high frequency to maximize control. To simulate this environment and overcome the limitations associated with relying on historical data, we utilize the multi-agent market simulator ABIDES, which provides a diverse range of depth levels within the limit order book. We present a custom MDP formulation followed by the results of our methodology and benchmark the performance against standard execution strategies. Results show that the reinforcement learning agent outperforms standard strategies and offers a practical foundation for real-world trading applications.
Date: 2024-11, Revised 2025-11
New Economics Papers: this item is included in nep-cmp and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2411.06389 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.06389
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().