EconPapers    
Economics at your fingertips  
 

A Risk Sensitive Contract-unified Reinforcement Learning Approach for Option Hedging

Xianhua Peng, Xiang Zhou, Bo Xiao and Yi Wu

Papers from arXiv.org

Abstract: We propose a new risk sensitive reinforcement learning approach for the dynamic hedging of options. The approach focuses on the minimization of the tail risk of the final P&L of the seller of an option. Different from most existing reinforcement learning approaches that require a parametric model of the underlying asset, our approach can learn the optimal hedging strategy directly from the historical market data without specifying a parametric model; in addition, the learned optimal hedging strategy is contract-unified, i.e., it applies to different options contracts with different initial underlying prices, strike prices, and maturities. Our approach extends existing reinforcement learning methods by learning the tail risk measures of the final hedging P&L and the optimal hedging strategy at the same time. We carry out comprehensive empirical study to show that, in the out-of-sample tests, the proposed reinforcement learning hedging strategy can obtain statistically significantly lower tail risk and higher mean of the final P&L than delta hedging methods.

Date: 2024-11
New Economics Papers: this item is included in nep-big, nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2411.09659 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.09659

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2411.09659