EconPapers    
Economics at your fingertips  
 

Mirror Descent Algorithms for Risk Budgeting Portfolios

Martin Arnaiz Iglesias, Adil Rengim Cetingoz and Noufel Frikha
Additional contact information
Martin Arnaiz Iglesias: UP1 UFR27
Adil Rengim Cetingoz: UP1 UFR27
Noufel Frikha: UP1 UFR27

Papers from arXiv.org

Abstract: This paper introduces and examines numerical approximation schemes for computing risk budgeting portfolios associated to positive homogeneous and sub-additive risk measures. We employ Mirror Descent algorithms to determine the optimal risk budgeting weights in both deterministic and stochastic settings, establishing convergence along with an explicit non-asymptotic quantitative rate for the averaged algorithm. A comprehensive numerical analysis follows, illustrating our theoretical findings across various risk measures -- including standard deviation, Expected Shortfall, deviation measures, and Variantiles -- and comparing the performance with that of the standard stochastic gradient descent method recently proposed in the literature.

Date: 2024-11
New Economics Papers: this item is included in nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2411.12323 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.12323

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2411.12323