Deep Learning in Long-Short Stock Portfolio Allocation: An Empirical Study
Junjie Guo
Papers from arXiv.org
Abstract:
This paper provides an empirical study explores the application of deep learning algorithms-Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Transformer-in constructing long-short stock portfolios. Two datasets comprising randomly selected stocks from the S&P500 and NASDAQ indices, each spanning a decade of daily data, are utilized. The models predict daily stock returns based on historical features such as past returns,Relative Strength Index (RSI), trading volume, and volatility. Portfolios are dynamically adjusted by longing stocks with positive predicted returns and shorting those with negative predictions, with equal asset weights. Performance is evaluated over a two-year testing period, focusing on return, Sharpe ratio, and maximum drawdown metrics. The results demonstrate the efficacy of deep learning models in enhancing long-short stock portfolio performance.
Date: 2024-10, Revised 2024-11
New Economics Papers: this item is included in nep-big, nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2411.13555 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.13555
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().