Multiscale Markowitz
Revant Nayar and
Raphael Douady
Papers from arXiv.org
Abstract:
Traditional Markowitz portfolio optimization constrains daily portfolio variance to a target value, optimising returns, Sharpe or variance within this constraint. However, this approach overlooks the relationship between variance at different time scales, typically described by $\sigma(\Delta t) \propto (\Delta t)^{H}$ where $H$ is the Hurst exponent, most of the time assumed to be \(\frac{1}{2}\). This paper introduces a multifrequency optimization framework that allows investors to specify target portfolio variance across a range of frequencies, characterized by a target Hurst exponent $H_{target}$, or optimize the portfolio at multiple time scales. By incorporating this scaling behavior, we enable a more nuanced and comprehensive risk management strategy that aligns with investor preferences at various time scales. This approach effectively manages portfolio risk across multiple frequencies and adapts to different market conditions, providing a robust tool for dynamic asset allocation. This overcomes some of the traditional limitations of Markowitz, when it comes to dealing with crashes, regime changes, volatility clustering or multifractality in markets. We illustrate this concept with a toy example and discuss the practical implementation for assets with varying scaling behaviors.
Date: 2024-11
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2411.13792 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.13792
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().