EconPapers    
Economics at your fingertips  
 

Predictive Power of LLMs in Financial Markets

Jerick Shi and Burton Hollifield

Papers from arXiv.org

Abstract: Predicting the movement of the stock market and other assets has been valuable over the past few decades. Knowing how the value of a certain sector market may move in the future provides much information for investors, as they use that information to develop strategies to maximize profit or minimize risk. However, market data are quite noisy, and it is challenging to choose the right data or the right model to create such predictions. With the rise of large language models, there are ways to analyze certain data much more efficiently than before. Our goal is to determine whether the GPT model provides more useful information compared to other traditional transformer models, such as the BERT model. We shall use data from the Federal Reserve Beige Book, which provides summaries of economic conditions in different districts in the US. Using such data, we then employ the LLM's to make predictions on the correlations. Using these correlations, we then compare the results with well-known strategies and determine whether knowing the economic conditions improves investment decisions. We conclude that the Beige Book does contain information regarding correlations amongst different assets, yet the GPT model has too much look-ahead bias and that traditional models still triumph.

Date: 2024-11
New Economics Papers: this item is included in nep-ain, nep-big, nep-cmp and nep-fmk
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2411.16569 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.16569

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2411.16569