Causal Inference in Finance: An Expertise-Driven Model for Instrument Variables Identification and Interpretation
Ying Chen,
Ziwei Xu,
Kotaro Inoue and
Ryutaro Ichise
Papers from arXiv.org
Abstract:
Instrumental Variable (IV) provides a source of treatment randomization that is conditionally independent of the outcomes, responding to the challenges of counterfactual and confounding biases. In finance, IV construction typically relies on pre-designed synthetic IVs, with effectiveness measured by specific algorithms. This classic paradigm cannot be generalized to address broader issues that require more and specific IVs. Therefore, we propose an expertise-driven model (ETE-FinCa) to optimize the source of expertise, instantiate IVs by the expertise concept, and interpret the cause-effect relationship by integrating concept with real economic data. The results show that the feature selection based on causal knowledge graphs improves the classification performance than others, with up to a 11.7% increase in accuracy and a 23.0% increase in F1-score. Furthermore, the high-quality IVs we defined can identify causal relationships between the treatment and outcome variables in the Two-Stage Least Squares Regression model with statistical significance.
Date: 2024-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2411.17542 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.17542
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().