Difference-in-differences Design with Outcomes Missing Not at Random
Sooahn Shin
Papers from arXiv.org
Abstract:
This paper addresses one of the most prevalent problems encountered by political scientists working with difference-in-differences (DID) design: missingness in panel data. A common practice for handling missing data, known as complete case analysis, is to drop cases with any missing values over time. A more principled approach involves using nonparametric bounds on causal effects or applying inverse probability weighting based on baseline covariates. Yet, these methods are general remedies that often under-utilize the assumptions already imposed on panel structure for causal identification. In this paper, I outline the pitfalls of complete case analysis and propose an alternative identification strategy based on principal strata. To be specific, I impose parallel trends assumption within each latent group that shares the same missingness pattern (e.g., always-respondents, if-treated-respondents) and leverage missingness rates over time to estimate the proportions of these groups. Building on this, I tailor Lee bounds, a well-known nonparametric bounds under selection bias, to partially identify the causal effect within the DID design. Unlike complete case analysis, the proposed method does not require independence between treatment selection and missingness patterns, nor does it assume homogeneous effects across these patterns.
Date: 2024-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2411.18772 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.18772
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().