Deep learning interpretability for rough volatility
Bo Yuan,
Damiano Brigo,
Antoine Jacquier and
Nicola Pede
Papers from arXiv.org
Abstract:
Deep learning methods have become a widespread toolbox for pricing and calibration of financial models. While they often provide new directions and research results, their `black box' nature also results in a lack of interpretability. We provide a detailed interpretability analysis of these methods in the context of rough volatility - a new class of volatility models for Equity and FX markets. Our work sheds light on the neural network learned inverse map between the rough volatility model parameters, seen as mathematical model inputs and network outputs, and the resulting implied volatility across strikes and maturities, seen as mathematical model outputs and network inputs. This contributes to building a solid framework for a safer use of neural networks in this context and in quantitative finance more generally.
Date: 2024-11
New Economics Papers: this item is included in nep-big, nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2411.19317 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2411.19317
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().