From rotational to scalar invariance: Enhancing identifiability in score-driven factor models
Giuseppe Buccheri,
Fulvio Corsi and
Emilija Dzuverovic
Papers from arXiv.org
Abstract:
We show that, for a certain class of scaling matrices including the commonly used inverse square-root of the conditional Fisher Information, score-driven factor models are identifiable up to a multiplicative scalar constant under very mild restrictions. This result has no analogue in parameter-driven models, as it exploits the different structure of the score-driven factor dynamics. Consequently, score-driven models offer a clear advantage in terms of economic interpretability compared to parameter-driven factor models, which are identifiable only up to orthogonal transformations. Our restrictions are order-invariant and can be generalized to scoredriven factor models with dynamic loadings and nonlinear factor models. We test extensively the identification strategy using simulated and real data. The empirical analysis on financial and macroeconomic data reveals a substantial increase of log-likelihood ratios and significantly improved out-of-sample forecast performance when switching from the classical restrictions adopted in the literature to our more flexible specifications.
Date: 2024-12
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2412.01367 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2412.01367
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().