EconPapers    
Economics at your fingertips  
 

Cubic-based Prediction Approach for Large Volatility Matrix using High-Frequency Financial Data

Sung Hoon Choi and Donggyu Kim

Papers from arXiv.org

Abstract: In this paper, we develop a novel method for predicting future large volatility matrices based on high-dimensional factor-based It\^o processes. Several studies have proposed volatility matrix prediction methods using parametric models to account for volatility dynamics. However, these methods often impose restrictions, such as constant eigenvectors over time. To generalize the factor structure, we construct a cubic (order-3 tensor) form of an integrated volatility matrix process, which can be decomposed into low-rank tensor and idiosyncratic tensor components. To predict conditional expected large volatility matrices, we introduce the Projected Tensor Principal Orthogonal componEnt Thresholding (PT-POET) procedure and establish its asymptotic properties. Finally, the advantages of PT-POET are also verified by a simulation study and illustrated by applying minimum variance portfolio allocation using high-frequency trading data.

Date: 2024-12
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2412.04293 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2412.04293

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2412.04293