EconPapers    
Economics at your fingertips  
 

Convolution Mode Regression

Eduardo Schirmer Finn and Eduardo Horta

Papers from arXiv.org

Abstract: For highly skewed or fat-tailed distributions, mean or median-based methods often fail to capture the central tendencies in the data. Despite being a viable alternative, estimating the conditional mode given certain covariates (or mode regression) presents significant challenges. Nonparametric approaches suffer from the "curse of dimensionality", while semiparametric strategies often lead to non-convex optimization problems. In order to avoid these issues, we propose a novel mode regression estimator that relies on an intermediate step of inverting the conditional quantile density. In contrast to existing approaches, we employ a convolution-type smoothed variant of the quantile regression. Our estimator converges uniformly over the design points of the covariates and, unlike previous quantile-based mode regressions, is uniform with respect to the smoothing bandwidth. Additionally, the Convolution Mode Regression is dimension-free, carries no issues regarding optimization and preliminary simulations suggest the estimator is normally distributed in finite samples.

Date: 2024-12
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2412.05736 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2412.05736

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2412.05736