Probabilistic Targeted Factor Analysis
Miguel C. Herculano and
Santiago Montoya-Bland\'on
Papers from arXiv.org
Abstract:
We develop a probabilistic variant of Partial Least Squares (PLS) we call Probabilistic Targeted Factor Analysis (PTFA), which can be used to extract common factors in predictors that are useful to predict a set of predetermined target variables. Along with the technique, we provide an efficient expectation-maximization (EM) algorithm to learn the parameters and forecast the targets of interest. We develop a number of extensions to missing-at-random data, stochastic volatility, and mixed-frequency data for real-time forecasting. In a simulation exercise, we show that PTFA outperforms PLS at recovering the common underlying factors affecting both features and target variables delivering better in-sample fit, and providing valid forecasts under contamination such as measurement error or outliers. Finally, we provide two applications in Economics and Finance where PTFA performs competitively compared with PLS and Principal Component Analysis (PCA) at out-of-sample forecasting.
Date: 2024-12
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2412.06688 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2412.06688
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().