LLMs for Time Series: an Application for Single Stocks and Statistical Arbitrage
Sebastien Valeyre and
Sofiane Aboura
Papers from arXiv.org
Abstract:
Recently, LLMs (Large Language Models) have been adapted for time series prediction with significant success in pattern recognition. However, the common belief is that these models are not suitable for predicting financial market returns, which are known to be almost random. We aim to challenge this misconception through a counterexample. Specifically, we utilized the Chronos model from Ansari et al.(2024) and tested both pretrained configurations and fine-tuned supervised forecasts on the largest American single stocks using data from Guijarro-Ordonnez et al.(2022). We constructed a long/short portfolio, and the performance simulation indicates that LLMs can in reality handle time series that are nearly indistinguishable from noise, demonstrating an ability to identify inefficiencies amidst randomness and generate alpha. Finally, we compared these results with those of specialized models and smaller deep learning models, highlighting significant room for improvement in LLM performance to further enhance their predictive capabilities.
Date: 2024-12
New Economics Papers: this item is included in nep-ain, nep-big and nep-cmp
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2412.09394 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2412.09394
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().