Geometric Deep Learning for Realized Covariance Matrix Forecasting
Andrea Bucci,
Michele Palma and
Chao Zhang
Papers from arXiv.org
Abstract:
Traditional methods employed in matrix volatility forecasting often overlook the inherent Riemannian manifold structure of symmetric positive definite matrices, treating them as elements of Euclidean space, which can lead to suboptimal predictive performance. Moreover, they often struggle to handle high-dimensional matrices. In this paper, we propose a novel approach for forecasting realized covariance matrices of asset returns using a Riemannian-geometry-aware deep learning framework. In this way, we account for the geometric properties of the covariance matrices, including possible non-linear dynamics and efficient handling of high-dimensionality. Moreover, building upon a Fr\'echet sample mean of realized covariance matrices, we are able to extend the HAR model to the matrix-variate. We demonstrate the efficacy of our approach using daily realized covariance matrices for the 50 most capitalized companies in the S&P 500 index, showing that our method outperforms traditional approaches in terms of predictive accuracy.
Date: 2024-12
New Economics Papers: this item is included in nep-big, nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2412.09517 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2412.09517
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().