Optimal Strategy-proof Mechanisms on Single-crossing Domains
Mridu Prabal Goswami
Papers from arXiv.org
Abstract:
We consider an economic environment with one buyer and one seller. For a bundle $(t,q)\in [0,\infty[\times [0,1]=\mathbb{Z}$, $q$ refers to the winning probability of an object, and $t$ denotes the payment that the buyer makes. We consider continuous and monotone preferences on $\mathbb{Z}$ as the primitives of the buyer. These preferences can incorporate both quasilinear and non-quasilinear preferences, and multidimensional pay-off relevant parameters. We define rich single-crossing subsets of this class and characterize strategy-proof mechanisms by using monotonicity of the mechanisms and continuity of the indirect preference correspondences. We also provide a computationally tractable optimization program to compute the optimal mechanism for mechanisms with finite range. We do not use revenue equivalence and virtual valuations as tools in our proofs. Our proof techniques bring out the geometric interaction between the single-crossing property and the positions of bundles $(t,q)$s in the space $\mathbb{Z}$. We also provide an extension of our analysis to an $n-$buyer environment, and to the situation where $q$ is a qualitative variable.
Date: 2024-12
New Economics Papers: this item is included in nep-des and nep-mic
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2412.11113 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2412.11113
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().