EconPapers    
Economics at your fingertips  
 

Treatment Evaluation at the Intensive and Extensive Margins

Phillip Heiler, Asbj{\o}rn Kaufmann and Bezirgen Veliyev

Papers from arXiv.org

Abstract: This paper provides a solution to the evaluation of treatment effects in selective samples when neither instruments nor parametric assumptions are available. We provide sharp bounds for average treatment effects under a conditional monotonicity assumption for all principal strata, i.e. units characterizing the complete intensive and extensive margins. Most importantly, we allow for a large share of units whose selection is indifferent to treatment, e.g. due to non-compliance. The existence of such a population is crucially tied to the regularity of sharp population bounds and thus conventional asymptotic inference for methods such as Lee bounds can be misleading. It can be solved using smoothed outer identification regions for inference. We provide semiparametrically efficient debiased machine learning estimators for both regular and smooth bounds that can accommodate high-dimensional covariates and flexible functional forms. Our study of active labor market policy reveals the empirical prevalence of the aforementioned indifference population and supports results from previous impact analysis under much weaker assumptions.

Date: 2024-12
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2412.11179 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2412.11179

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-30
Handle: RePEc:arx:papers:2412.11179