EconPapers    
Economics at your fingertips  
 

Leveraging Generative Adversarial Networks for Addressing Data Imbalance in Financial Market Supervision

Mohan Jiang, Yaxin Liang, Siyuan Han, Kunyuan Ma, Yuan Chen and Zhen Xu

Papers from arXiv.org

Abstract: This study explores the application of generative adversarial networks in financial market supervision, especially for solving the problem of data imbalance to improve the accuracy of risk prediction. Since financial market data are often imbalanced, especially high-risk events such as market manipulation and systemic risk occur less frequently, traditional models have difficulty effectively identifying these minority events. This study proposes to generate synthetic data with similar characteristics to these minority events through GAN to balance the dataset, thereby improving the prediction performance of the model in financial supervision. Experimental results show that compared with traditional oversampling and undersampling methods, the data generated by GAN has significant advantages in dealing with imbalance problems and improving the prediction accuracy of the model. This method has broad application potential in financial regulatory agencies such as the U.S. Securities and Exchange Commission (SEC), the Financial Industry Regulatory Authority (FINRA), the Federal Deposit Insurance Corporation (FDIC), and the Federal Reserve.

Date: 2024-12
New Economics Papers: this item is included in nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2412.15222 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2412.15222

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-27
Handle: RePEc:arx:papers:2412.15222