Direct Inversion for the Squared Bessel Process and Applications
Simon J. A. Malham,
Anke Wiese and
Yifan Xu
Papers from arXiv.org
Abstract:
In this paper we derive a new direct inversion method to simulate squared Bessel processes. Since the transition probability of these processes can be represented by a non-central chi-square distribution, we construct an efficient and accurate algorithm to simulate non-central chi-square variables. In this method, the dimension of the squared Bessel process, equivalently the degrees of freedom of the chi-square distribution, is treated as a variable. We therefore use a two-dimensional Chebyshev expansion to approximate the inverse function of the central chi-square distribution with one variable being the degrees of freedom. The method is accurate and efficient for any value of degrees of freedom including the computationally challenging case of small values. One advantage of the method is that noncentral chi-square samples can be generated for a whole range of values of degrees of freedom using the same Chebyshev coefficients. The squared Bessel process is a building block for the well-known Cox-Ingersoll-Ross (CIR) processes, which can be generated from squared Bessel processes through time change and linear transformation. Our direct inversion method thus allows the efficient and accurate simulation of these processes, which are used as models in a wide variety of applications.
Date: 2024-12
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2412.16655 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2412.16655
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().