Fitting Dynamically Misspecified Models: An Optimal Transportation Approach
Jean-Jacques Forneron and
Zhongjun Qu
Papers from arXiv.org
Abstract:
This paper considers filtering, parameter estimation, and testing for potentially dynamically misspecified state-space models. When dynamics are misspecified, filtered values of state variables often do not satisfy model restrictions, making them hard to interpret, and parameter estimates may fail to characterize the dynamics of filtered variables. To address this, a sequential optimal transportation approach is used to generate a model-consistent sample by mapping observations from a flexible reduced-form to the structural conditional distribution iteratively. Filtered series from the generated sample are model-consistent. Specializing to linear processes, a closed-form Optimal Transport Filtering algorithm is derived. Minimizing the discrepancy between generated and actual observations defines an Optimal Transport Estimator. Its large sample properties are derived. A specification test determines if the model can reproduce the sample path, or if the discrepancy is statistically significant. Empirical applications to trend-cycle decomposition, DSGE models, and affine term structure models illustrate the methodology and the results.
Date: 2024-12
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2412.20204 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2412.20204
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).