EconPapers    
Economics at your fingertips  
 

Re-examining Granger Causality from Causal Bayesian Networks Perspective

S. A. Adedayo

Papers from arXiv.org

Abstract: Characterizing cause-effect relationships in complex systems could be critical to understanding these systems. For many, Granger causality (GC) remains a computational tool of choice to identify causal relations in time series data. Like other causal discovery tools, GC has limitations and has been criticized as a non-causal framework. Here, we addressed one of the recurring criticisms of GC by endowing it with proper causal interpretation. This was achieved by analyzing GC from Reichenbach's Common Cause Principles (RCCPs) and causal Bayesian networks (CBNs) lenses. We showed theoretically and graphically that this reformulation endowed GC with a proper causal interpretation under certain assumptions and achieved satisfactory results on simulation.

Date: 2025-01
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2501.02672 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2501.02672

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2501.02672