Sequential Monte Carlo for Noncausal Processes
Gianluca Cubadda,
Francesco Giancaterini and
Stefano Grassi
Papers from arXiv.org
Abstract:
This paper proposes a Sequential Monte Carlo approach for the Bayesian estimation of mixed causal and noncausal models. Unlike previous Bayesian estimation methods developed for these models, Sequential Monte Carlo offers extensive parallelization opportunities, significantly reducing estimation time and mitigating the risk of becoming trapped in local minima, a common issue in noncausal processes. Simulation studies demonstrate the strong ability of the algorithm to produce accurate estimates and correctly identify the process. In particular, we propose a novel identification methodology that leverages the Marginal Data Density and the Bayesian Information Criterion. Unlike previous studies, this methodology determines not only the causal and noncausal polynomial orders but also the error term distribution that best fits the data. Finally, Sequential Monte Carlo is applied to a bivariate process containing S$\&$P Europe 350 ESG Index and Brent crude oil prices.
Date: 2025-01
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2501.03945 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2501.03945
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().