A mixture transition distribution approach to portfolio optimization
Riccardo De Blasis,
Luca Galati and
Filippo Petroni
Papers from arXiv.org
Abstract:
Understanding the dependencies among financial assets is critical for portfolio optimization. Traditional approaches based on correlation networks often fail to capture the nonlinear and directional relationships that exist in financial markets. In this study, we construct directed and weighted financial networks using the Mixture Transition Distribution (MTD) model, offering a richer representation of asset interdependencies. We apply local assortativity measures--metrics that evaluate how assets connect based on similarities or differences--to guide portfolio selection and allocation. Using data from the Dow Jones 30, Euro Stoxx 50, and FTSE 100 indices constituents, we show that portfolios optimized with network-based assortativity measures consistently outperform the classical mean-variance framework. Notably, modalities in which assets with differing characteristics connect enhance diversification and improve Sharpe ratios. The directed nature of MTD-based networks effectively captures complex relationships, yielding portfolios with superior risk-adjusted returns. Our findings highlight the utility of network-based methodologies in financial decision-making, demonstrating their ability to refine portfolio optimization strategies. This work thus underscores the potential of leveraging advanced financial networks to achieve enhanced performance, offering valuable insights for practitioners and setting a foundation for future research.
Date: 2025-01, Revised 2025-01
New Economics Papers: this item is included in nep-net
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2501.04646 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2501.04646
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().